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LINEAR ACCELERATION GUIDANCE FOR LUNAR

LANDING AND LAUNCH TRAJECTORIES

SbI@_RY

I

soxu.ion to the problem of maneuvering a_ An approximate analyticsl * +

• spacecraft to reach specified end conditions by finite thrusting in the

. vicinity of the moon is presented. The analysis includes all three
dimensions and the acceleration terms in the equations are linearized.

The examples presented are limited to the planar case. Although in

general the thrusting scheme is valiable, a constraining relation is
introduced to allow b_,rning time fol constant thrust to be cg.lculate_.

Similarly, a constraining relation may be introduced which allows a b,u'n-

_ ing time for a constant t_rust angle to be calculated, i

:_ The solution is versatile in that it allows variable thrust, constant .

>- thrust, and constant thrust angle trajectories between specified end con- I
:_: ditions.

-7.

INTRODUCTION

3 •

_'%-_ In order that a spacecraft such as the Apollo Lunar Excursion Module,L

(LEM) can be guided during landing, launch, _hort or rendezvou_ to e set
of specified end .-onditlons in a manner tha_ is near fuel optim_!, a set

of guidance equatluns must be mechanized on board the spacecraft that

will predict the necessary thrust and/or thrust angles. This paper will

present the derivation of a set of equations that are suitable for this

task from the standpoint of guidance and fuel optimum performance.
tL

_ In obtaining a solution for the guidance equations, it is desirable
,_ that several criteria be met:

(1) The equations must be computationally simple.

_-_i (2) The equations must be suitable for use in as many operational
modes as possible.

'_:_" (3) The equations must yield a solution theft is near the fuel

_ optimum.

_ In order to obtain such a set of guidance equations, the first step _._

was choosing a suitable approximation to linearize the equations of
,:_otion. To accomplish this, _t was assumed that the change in altltu_e
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of the spacecraft is small compared to the initial radius of the space- ._
craft This is similar to assuming a constant gravitational field. The

next step was to solve the two-point boundary value problem explicitly. :_5

The approach taken in this paper in solving the problem is to pre- '_

scribe that the radial, tangential, and out-of-plane components of the _
acceleration vary linearly with time. The equations of motion can then _

be solved in closed form. :i_

Six parameters are introduced in the three acceleration components "_

which can be determined in closed form in terms of the six specified end _:_

conditions. These parameters constitute the guidance equations which

will always insure that the spacecraft's trajectory will meet the speci-
fied terminal conditions.

For this acceleration scheme, the equation for the thrust angle is
the same as that for the fuel optimum for a flat central body or constant

gravity field approximation where the flual position and velocity are

constrained (ref. I).
J

It is also sho_ that by introducing other constraining relations,

constant thrust and constant pitch angle trajectories can be generated.

LIST OF _I._

A1, A2, A3, A4, A9 constants defined on page
\

2 2 2

r _¢ _

b r+%% +

c 8r2 + _¢e + 82

/ F(_) condltion for constant thrust

G(_) condition for constant pitch angle

gE 32.2 feet _2"----'constant relating mass to weight in i
sac

{ earth pounds ;

..k.
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h altitude, feet

I specific impulse, seconds
-;p

il, K2, KT_ K_ arbitrary constants of integration related to
initial conditions

t

m mass

R radius of attracting body, feet

r, ¢, @ polar coordinates defined in Sketch !

T thrust, pounds

t time, seconds

_. v velocity, feet per second

characteristic velocity, Vc, feet per second_ Vc

-_:-_ W weight of spacecraft, pounds

_i X arc length oz range along surface of

! i attracting body, feet

Z out-of-plane range, feet

" _ initial level of applied acceleration in a

given direction, ft/sec2

_-' _ thrust azimuth angle, degrees

(with subscripts) rate of change of applied acceleration in a

given direction, ft/sec 3

8( ) denotes variation

O angle between thrust vector and local

-_._ horizontal; the pitch angle, degrees
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universal gravitational constant times mass of .._.

attracting body, ftS/sec2

V T/@ElspmC, seconds-I

T burning time, seconds _

( ) derivative of ( ) with respect to t _"'_

( )" derivative of ( _ with respect to T

Subscripts

0 conditions when t = 0

i, 2, 3, 4, 3 denotes different A's and K's

r pertaining to radial direction

v conditions when t = T

pertaining to ci:cumferential, or x, direction

pertaining to direction perpendicular to r,
plane

DERIVATION OF E_JATIONS

The equations of motion of a thrusting spacecraft in a gravitational
field are:

Tr (i). r(_a + _2_in2_) + _ = _-
r

_--(r2_)-r2_2 sin_ _o__ =r_ (2)dt m

(r2_ sin _) , r25_ co__ = r _ (3)dt m

See reference 2.
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These equations may be solved analytically by prescribing linear

acceleration components: (See sketch 1.)

T
r T

--= - sin e = _ + _ t (.%_
m m r r

i

To _
--=m m:cos e cos _ = _ + _¢t (5)

T_ T
= --COS _ sin G --@_/ + _, (C)m m

' and ass_ning thaL the change in air _' _"• ,, _e _ small compared to the initia±

radius to, and that the out-.5_-iAa,_. _JS!e and _itstime derivative,

_. _ and _. are small.

In equation (2), _s _ume that r = x = constant _:'dthat:o

< r2_ 2 s_n _ cos _ < < 'rTd f_r2_). This equatlon_ using :'_ then becom, .:,

._
#'_,;r.o2_) = ro(_¢' + I_¢t)

Integrating this equ_(, or_twice,

t2j,o

-- .t- 7

Before applying initial conditions to (7) and (8), make a change
of variables by defining the range X : Re. Equations (7) and (8) then
become '

_ R 3.

o: X--r I + t+g (9)

_- R [K 1%2 1 5]_' X = _o 2 + Klt + _ + _ _¢t (lO)

1970025062-010



wb_re _ and K2 arc constants of i,_tegra%ion.

, Assuming that r = r = constant and that _2sin2¢ < < _2
0

equation (i) becomes,

ro _2 -_2 + _rt ( ) ""- + = _ .u.. -_r
r "

Square both sides of equation (7)_ and then substitute from f,_

, (i11, i_:j,_,

r
o

Solvir_ for _,

r= +_- .+ + _ t + I-- 2 +Kl_ t 2
r ro \ r° r° ,

4 _-_ t3 _ _ t4 (12)r o

Now, r = h 4- R, where h is the _ititude of _he spacecraft and R

is the radius of the attracting body. Using _ = "fi and by defining,

52
r 2

o r
o

o

r

2
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r
0

A_= _

- eqaation (12) becomes:

"i. A1 + A2t + Ast2 A4t_ + %t 4
= + (15)

r

- Now integrate (I}),& -

Ast3 _ A4 A_t 5 (14)
• 1 1 __t 4_2: :,K_ +:_t2 i

g:g-

"_-&- K3t 1 + _ _2t3 + _ A3t4_ h = K4 + + _ & t2

+ 2-OA4t5 + Ast (15)

_- where K5 and K_ are constants of integr_tlou.

_: Define the out-of-plane range, Z = r sin ¢ sin

For small _ngles _ and assuming r = r = constant this beec_r, es,0 :

Z =_r sin¢
O

L

and the out-of-plane veloeit$ becomes,

sin _ + _ _ r cos ¢ (o -

Substituting this las_ expression into (}), and again assuming _ 4:
r = r = constant, (3) be_:omes, i,.-o

d

a-{-(_- r cos_) +r cos ;% + "_,

1 _ N_
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Differentiating the first term and using the definition X = Re, the

last eqaation reduces to: .:_
r

i"+ _R*J[d(_cos2) = _,,+ _,t (16) _2%

Since _ is a small ar_le and if X does not change too rapidly _!_
with time, the second term oh the left may be neglected and (!6) becomes: _7

g : _, + .%t (17) 2

Equation (17) may now be integrated twice to give: _

i _t 2 (18) "__.--K5+%t +g _

1 _,t2 + _ _,t 5Z = K6 + K5t + g (19)

Equavions (9), (I0), (14), (15), (18), and (19_ are the equations

of motion of the spaeec;aft. Now apply the initial conditions to

evaluate K1 through K6. When t = O, X = Xo, _(= _(o'h = ho, h = ho'

Z = Zo, Z = Z'o" The constants of integration are seen to be:

r r

o Xo' o: R K2=_' K3:_o'K4=ho'r_:_o'andK6:Zo.

The equations of motion are now determined except for the thrust

parameters _' _¢' _r' _r' _'_'and _, which determine the thrust

history; that is, the that.st magnitude and dizection. The six equations _:

of motion may be solved for these thrust parameters in terms of final
conditions. When t = T, X = X_ X = X, h = h., h = h, Z = Z., and _

T T

= Z . After considerable manipulation the equations for the thrust (
T

parameters become:

2ro.[3 i]% =- T_t;(5- 5)+eo+ (_o)

6 ror2, t] _,.=_ rL;.,x°-x_+to�(_
!.
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i

or_

Va ot2 (g) :_

T _
-= +bt + 2
m :_

_here, _:_

2 2 2
a=_ +_ +_,r _

,) i_
b = 2(m_r + _p_ + _A

c =_r + +

The total acceleration in (28) is now used directly in the definition

for cizaracteristic velocity, or l:_rformance i:_tex, of a given trajectory.

. dt = �bt"_ ct2 dt (29)
%

Performing the integration equation (29) becomes:

v _ in +_ +_+'V;+_ V_c 8c3/2

+_-

2e_-+bVa 2 b__ (30)+ 4c' +by +cv - 4c

Since a, b, and c are dependent only upon the initial- and final

conditions and the burning time _, the characteristic velocity is related

only to the burning time once the end conditions are specified. In most

cases, it is desirable to minimize V subject to certain constraints.
C

J
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THRUb_fING MODES

Given a complete set of initial and terminal conditions, there

exists an infinity of trajectories that will satisfy the end conditions.

If a burning time is specified, the trajectory is uniquely defined. Int

so_.,ecases, a burning time will be chosen that will min_ize V • Two
C

"_ ....:......_...............r_._nte]+_- n_t_ rages of course are.. t.l)choosing the burninK_ time

zo that a constant thrust magnltude trajectory can be obtained, and

(2) choosing the burning time so that a trajectory with a constant value
of e is obtained.

Case a: Minimum V • To obtain the bulnling time for minimum V ,
C C

the derivative of V with respect to burning time may be set equal to
C

zero, and the resalting relation solved for 7. This value of 7 must

them be further investigated to determine if it yields a maximum, minimum,

-. or an inflection point. This could be done but would be difficult, since
V is a very complicated function of T. It is much easier from the

: C

standpoint of mathematical complexity to solve (29) numerically by just

evaluating it for a wide range of 7 and then looking for the minim,_m

or:a plot of Vc versus 7. Once the optimum value o_ _ is obtained,

[:" %, i3r, %, i3_, %, 1_ can be calculated from (20) t_ ough (2L);
then the trajectory with rr.inimum V bas=d on these value" is c:*ic_-

C

__ lated from (9), (!0), (14), (15), (18), and (19).

Case b: Constant Tnrust Magnitude. Equation (28) may be shown to

yield a constant thrust magnitude by comparir_ it to the acceleration
relation for constant thrust. The acceleration for consta_,t thrust may

be o/tained by considering the basic relation between thrust and rate

chancre of mass,

_ T = - gE Imp _ = m#
k'.

T/m
(1 - vt), v T o

For constant thrust 3 m = m0 = m = 1 - ,_t

_ _ T/m O

%: gE Isp

_ Equating this to (28),

% T 4 ct2 o (31)? --= a+bt + :I vt,_ m -
%

.t
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._ [_t.

For a specified set of end conditions eqaation (_i) nmy be solved ;_
for the burning time. T, since a, b, _d c _re functions of T, at any _:_

time t. In particular at time t = O, (31) becomes T/m ° ...._

But since a = _ + _ +_$_ the relation to be solved for T is, 2_r _=r%

a--% +% +% = (_m°) \_o/ 2

To determine the proper constant thrust level, equazlon (32) may be
solved simultaneously with the characteristic velocity equation for

, constant thrust, Vc = - gE Isp In (I - vT)-

Equation (32) must be solved for 7 by an iterative process.

Define the function,

2 2 2 T(_n)_ 2F(_)=_ +% +_ - gE =0 (3_)

and its derivative,

d."

The iteration process,

F(_n)
_n+_=_n F-q_" (3_)

is then set up to determine T.

Equation (3_) has been o_served to converge quite rapidly for the

constant thrust burning time.

Case c." ...Constant e. Assumi_ _ is small so that cos _ _ I,

the time derivative of equation (27) for 6 is,

(_= _ co,2 e 56)
% +_t)2

F_r e to be constant, _ - O, s= (36) yields,• ¢

r
i

1_ ;--_-. _,_,...._. I | • m , ' I

1970025062-017
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i_owdefine the f_nction,

O(_) : %_r - ar_@ = 0

and its derivative,

= " )" +

The iterative solution for the burning time for constant % is,

G(T n)

Tn+I : Tn - G_ (58)

USE OF THE TANALYTICALLY DERIVED THRUST PARAMETERS FOR GUIDANCE

Equations (20) through (29) give analytical expressions for the
O

thrust parameters. They were derived on the basis of a model that

approxir._ted the inverse square gravity field. These equations may be

f_ considered as guidance equations which will guide the spacecraft luring

_ various maneuvers. Theperformance of these guidance equations can i:_

evaluated by a simulation that is programed on a digital computer. A

trajectory program which numerically solves equations (I), (2), and

. (5) to predict the position and velocity of the spacecraft at any time
\ is a basic component of the simulation. A guidance progrmr_ which contin-

ually computes the thrust and its direction by solving equations (20)
through (2_) is the other basic component of the simulation. The

instantaneous thrust vector computed by the guidance program depends
only upon the present position and velocity of tl.espacecraft and the

specified terminal conditions.

,_:. The problem of combining the two programs for variable thrust is
_ straightforward. Both sees of _quations are given the same initial
_ conditions. The final conditions are also substituted into the thrust

_ parameter relations, equations (20) through (2_). _r' _r' _' _¢' _'

: _ are computed with these conditions and are used to calculate O, _,L-

and (T/m) from equations (26), (27), and (28), for the first step. The
output, x, x, h, _, Z, 9,,of the first integration step are then used

= as the initial conditions in equations (20) through (25) to compute e,

_, and (T/m), for the ne_ integration step. The calculation thus pro-
coeds to the final conditions of the problem.

If constant tb-_ust or constant 8 is desired the burnir_ time is

: updated by equations (35) or (38), just a_ e, _, and (T/m) are in the

1970025062-018
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variable thrust case discussed above. T is updated prior to each

Integration step using the output from the previous step a_ the initial

conditions. The c_nputation procedure can best be visualized by re

ferring to the block diagram in Sketch 2.

EXAMPLESOF CALCIEA_IONS

Several examples will now be given to illustrate the various modes
in which the computation scheme may be operated. In all of the following

examples, the calculations were l_mlted to the two-_ensional case.

(a) Variable thrust with minimum characteristic velocity: !

This mode is illustrated by a descent trajectory from

approximately 50,000 feet to I0,000 feet above the lunar surface. !
The burnin_ time was 274 seconds and was calculated by solving

d% I
numerically. The V was 4,833 feet per second and the total

range was specified as 169.7 n.mi. Time histories of the variables

are shown in figures (la) through (if). |

i(b) Constant thrust:

This mode is also illustrated by a lunar descent trajectory_
The initial and final conditions are the same as in the variable

mode discussed in (a) above. The burning time was 299.3 seconds

and the V was 4,883 feet per second. The time histories of the
C

variables are shown in figures (2a) through (2e). Also plotted for
comparison is a trajectory having the same boundsa_ conditions,

that was calculated from a calcu_lus of variations _ptimum program.

This optimum trajectory had a burnin_ time of 300.90 seconds with

a Vc of 4,883 feet per second. The V of the guided constant

thrust trajectory was less than Chat for the optimum because of

the slight difference in burning time between the two. It should

be noted here that the two trajectories flown are different, except
for the boundary conditi_us. The thrust-to-initial-weight ratio
was 0.4.

(c) Constant thrust launch with an error analysis for variations in
the thrust _ator:

This trl_lectory hid an initial altitude of 1,000 feet and an
initial vertical velocity of 100 feet per second. The final

/ condations were pericynt.hlon altitude of _0,000 feet, with orbital

_ L w

1970025062-019



velocity of about 5,556 feet per second. The total range was 92.92 n.mi.

The guided trajectory is compared with the optimum in table I. Additional

calculations of this trajectory were made perturbing independently the

thrust magnitude T and thrust direction e by small amounts. The

effect of these per_urbances are given in table I£. It is evident from
this table that the end conditions are not seriously affected by 1.O to

5.0° misalinements in thrust direction, and 1.O or 2.0 percent variations
' in thrust magnitude. The end condition most affected was the range.

CONCLUDING REMARKS

An approximate analytical solution to the problem of maneuvering a

spacecraft to reach specified end conditions by finite thrusting has

, been presented. The feasibility of using this solution to guide the

spacecraft to a specified final state has been demonstrated. Further,
: it has been shown that by the introduction of certain constraining

_ relations that _onstant thrust and constant thrust angle trajectories

may be flown. The guidance equations obtained from the _nalytical
solution have been shown to be computationally simple; versatile, in

that several operational modes are possible; and economical in that they
" guide the spacecraft along a trajectory that is near the fuel o_timum.

1970025062-020
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TABLE I.- COMPARISON OF FINAL CONDITIONS BETWEEN AN

OPTIMUM CONSTANT THRUST LAUNCH _.NDA GUIDED

LAUNCH; T/W ° = 0.6; Isp 319 sec.

I .....

Initial Final Conditions

Conditions Optimum Guided

x, feet 0 564,973.4 962,982.0

h, feet 1,O00 49,997.94 *_, 996.62
l

_.,fps 0 9,598.02 9,998.93
- }
_ _, fps lO0 o.082_7 0.26230

_.::. re, fps 9,779.29 9,778.12

4_ T, see 227.916 228.00

] 970025062-022
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